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Abstract—A micromechanical model describing “quasi-ductile” Hertzian contacts in otherwise brittle
ceramics is developed. The elemental basis of the model is a discrete “fault” along an internal weak
interface, constrained at its ends by an elastic matrix and subject to frictional sliding, in the subsurface
zone of high shear stress in the Hertzian field. By summation over a prescribed density of shear faults
within the active plastic zone, the analysis leads to a constitutive indentation stress—strain function, with
special provision for the incorporation of microstructural variables. Experimental data from a series of
mica-containing glass-ceramics with contiguous platelet microstructures are used to confirm the essential
predictions of the model. It is demonstrated that plasticity increases with volume fraction and aspect ratio,
but not size, of the platelets. Parametric evaluations by curve fitting the indentation stress—strain data
allow for predictions of intrinsic stress—strain responses for the glass-ceramics in conventional uniform

stressing states.

1. INTRODUCTION

The quest for plasticity has remained a persistent
theme in the development of structural ceramics.
The sensitivity of most ionic—covalent materials at
room temperature to abrupt brittle failure [1] is so
pervasive that even limited plasticity rarely occurs
in ordinary stress—strain tests, even in compression,
except in extremely coarse materials like rocks [2],
composites and concretes [3]. It is only under
conditions of extreme hydrostatic pressure, such as
produced naturally in subterranean rock formations
[2] and artificially in the confining belt apparatus used
by geophysicists [4], that tensile fracture is suppressed
and irreversible deformation states become evident
in the stress—strain response. In that it relates to
an underlying deformation mechanism other than
dislocation motion, this irreversible deformation is
referred to as ‘“‘quasi-ductility” in the rock and
concrete literature [3].

Recent studies using Hertzian indentation with
spherical indenters have demonstrated that plasticity
is attainable in ceramics with certain heterogeneous
microstructures [5S—10]. This plasticity registers as a
deviation from linear elasticity on an ‘“‘indentation
stress—strain curve”, i.e. a plot of contact pressure
against relative contact/sphere radius [11-13]. Ordin-
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arily, brittle ceramics show classical tensile macro-
fractures, so-called Hertzian cone cracks [14-18],
with only minor perturbation on the elastic response.
However, in microstructures with constrained weak
internal boundaries, coarse grains and high internal
stresses, one observes a “plastic” damage zone in
the subsurface compression-shear field, reminiscent
of metals [11, 19]. These same heterogeneous ceramic
microstructures are of interest for enhanced long-
crack toughness, by grain-interlock bridging at the
crack interface [20—23]. At the micromechanical level,
the contact plastic zone is made up of an array of
discrete, closed “shear faults” at the weak boundaries,
with friction-resisted interfacial sliding [24, 25]. The
internal friction is an important element in contact
fatigue, because of attrition of the sliding interface in
cyclic loading [25-27]. Apart from its insight into
intrinsic deformation processes in ceramics, Hertzian
contact is of great practical relevance to applications
such as bearing performance, impact damage and
biomechanical (e.g. dental) implants [28].

Contact plasticity is most apparent in second-phase
platelet microstructures with high volume fractions,
aspect ratios and weak interphase boundaries
[8,9, 25]. An extreme case is that in which the platelet
volume fraction is sufficiently high as to form a
contiguous second-phase network. This special
microstructural type has figured prominently in the
development of machinable ceramics, notably glass-
ceramics [29-31], where interconnectivity enables
easy material removal at the microscale yet preserves
respectable long-crack toughness [32, 33]. These are
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also ideal microstructures in the context of the present
study, in that the plasticity is almost exclusively
from fault sliding—interconnectivity of the platelet
phase avoids the complication of extensile cracking
from the fault ends [34-36] that is characteristic of
other quasi-ductile materials [5, 7, 10]. We will pay
particular attention to this class of material in the
interest of a case study, but emphasize the generality
of our conclusions to any material system in which
fault deformation dominates any accompanying
extensile cracking.

Here we develop a model for the Hertzian stress—
strain response for ceramics with discrete weak inter-
faces, with emphasis on the plastic component. Our
model derives explicitly from the micromechanics
of an elemental shear fault within the Hertzian field.
We use experimental data from a series of machinable
mica-containing glass-ceramics with contiguous plate-
let microstructures to confirm some of the important
predictions of the modelling. The model enables us
to derive an indentation stress—strain curve from a
constitutive starting relation for individual shear
faults in terms of extrinsic Hertzian stresses and
intrinsic frictional resistance stresses. In this way,
accessible microstructural parameters can be incor-
porated into the stress—strain function. Thus we
show that plasticity increases with volume fraction
and aspect ratio, but not size, of the constituent
platelets. We also obtain evaluations for our specific
glass-ceramic. We contend that the indentation
curve is a reflection of the true stress—strain response
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of the material in conventional uniform stressing
states.

2. CASE STUDY ON GLASS-CERAMIC
SYSTEM

2.1. Material characterization

For our material system we use a machinable
glass-ceramic derived from a commercially available
product from Corning Inc. (Corning, NY). Specimens
were supplied to us in the form of a custom-made
series of glass-ceramics, plus the base glass. The base
glass is formed from the quaternary system K,O-
MgF,~MgO-SiO,, and the ensuing microstructure
after a 4h heat treatment has a near-contiguous
fluorine tetrasilicic mica platelet network [37]. Modi-
fications to the microstructure are readily effected by
adjusting the heat treatment temperature: 1000, 1040,
1060, 1080 and 1120 C in our series of glass-ceramics.

The microstructure of the glass-ceramics is typified
by the scanning electron micrograph in Fig. 1.
Surface etching with dilute hydrofluoric acid reveals
the mica platelets in the residual glass matrix. Digital
image analysis of such micrographs indicates that the
volume fraction of platelets remains effectively invari-
ant over the range of heat treatment temperatures
studied, but that the length and aspect ratio increases
monotonically with continuing heat treatment. These
variations are plotted in Fig. 2.

Young’s modulus measurements using an acoustic
technique yield 70 + 1 GPa for all materials in the
series.

Fig. 1. Scanning electron micrograph of glass-ceramic heat-treated at 1120 C, surface-etched to reveal
mica platelets in glass matrix.
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Fig. 2. Plot of mica platelet volume fraction V,, length / and
aspect ratio L of mica platelets in glass-ceramics as function
of heat treatment temperature (fixed treatment time 4 h).

2.2. Hertzian test

Hertzian contact damage tests have been well
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documented for several brittle ceramics [5-10].
including a variant of the mica-containing glass-
ceramic material system described above [8, 26]. The
test itself is simple, involving normal loading of a
hard spherical indenter onto a polished flat specimen
surface. For the indenter, we use a tungsten carbide
sphere of radius r = 3.18 mm. Cyclic fatigue tests can
be run by repeat loading the sphere.

A bonded-interface configuration, in which two
epoxy-bonded half-blocks are indented symmetrically
across the interface trace on the top surface and then
separated, is used to examinc the subsurface damage
[7,8]. Figure 3 includes optical micrographs show-
ing half-surface and section views of a single-cycle
indentation made in glass-ceramic heat-treated at
1120°C, at load P = 2000 N. In the half-surface view,
Fig. 3(a), incipient ring cracks are observed at the
periphery of a plastic impression. In the scction
view, Fig. 3(b), we scc no indication of subsurface

(b)

Fig. 3. Optical micrograph (Normarski illumination) of spherical indentation at load P = 2000 N (pressurc
po=2.55GPa), in glass-ceramic heat-treated at 1060 C. Unectched surfaces from bonded-interface
specimen, showing (a) half-surface and (b) section view.
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Fig. 4. Scanning electron micrograph from center of section damage region from Fig. 3(b). Microfailures
at interphase boundaries are evident.

penetration of the surface cracks into the full
cone geometry: the ring cracks appear to have been
arrested by deflection away from the tensile stress
trajectories [16], along the weak interfaces [24].
Macroscopically, the subsurface damage resembles
the plastic zones seen in metals [19]. The damage in
Fig. 3(b) appears to be suppressed immediately below
the contact zone in the same way, although not to
the same degree, as previously reported in a coarser
variant of our mica-containing glass-ceramic [8].
Figure 4 is a higher magnification scanning elec-
tron micrograph from the central damage region of
Fig. 3(b). Microfailures by interfacial breakdown are
seen at the interphase boundaries. Such microfailures
have been observed even more compellingly in previ-
ous studies on other materials; in cyclic loading
especially the presence of extruded debris at the
damage section attests to the strong role of frictional
tractions at the closed, sliding interfaces [26,27].
No extensile “wing” microcracks are observed at the
sliding fault ends [34-36, 38], as one observes in other
materials [5-10], although such cracking may well
be anticipated at extreme loading conditions (e.g. in
machining [29-31] and high-cycle fatigue [27]).

2.3. Indentation stress—strain curves

In the contact field produced by a spherical indenter
the intensity of stress is governed by the indentation
pressure, p,= P/rna?, and the strain by the ratio
of contact radius to sphere radius, a/r [11,12]. A
straightforward geometrical similarity argument can
be used to show that the stress—strain function p,(a/r)
must be a unique function for a given deformable
material, regardless of the nature of deformation and

independent of sphere size [11]. Accordingly, a plot of
Do against a/r, determined from measurements of P
and « for a series of indentations at each indentation
radius [15], produces a universal indentation stress—
strain curve for each material.

~ 6 T T T 6 T T T
g | Base glass | | 1000°C i
VO
S oap 4 4f > .
8
a | — - -~
i=3
S 2f 4 2f .
=
s L ] L 4
[+
=
"E 0 1 1 1 0 1 1 1

0 0.1 0.2 03 04 0 0.1 0.2 03 04
. 6 T T T 6 T T T
& 1040°C 1060°C
S t 4 L i
= at 5 4 4f .
] o 5020 )
@ B o N B
=
S 2t 4 2 .
I3
gt . L
©
=
—_— 0 1 1 1 0 1 1 1

0 0.1 02 03 04 0 0.1 02 03 04
. 6 T T T 6 T T
S
=% 0,
3 | 1080°C i L 1120°C i

o

S ar 4 4r .
] 022
ir 17 1
8 2t 4 AL R 4
g L I Y 1
o
=)
'E‘ 0 1 1 1 0 1 1 1

0 0.1 02 03 04 O 0.1 02 03 04

Indentation strain, a/r Indentation strain, a/r

Fig. 5. Indentation stress-strain curves for base glass and

glass-ceramics heat-treated at specified temperatures for 4 h.

Data from experiments (Section 2), line fits from theoretical
analysis (Section 4).
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Indentation stress—strain p,(a/r) data are plotted in
Fig. 5 for each of the glass-ceramic heat treatments,
and for the base glass. Each data point represents an
individual indentation. Solid-line fits through these
data are made according to the ensuing theoretical
model (Section 3), using a paramietric adjustment
procedure (Section 4). Note that the nonlinear
deviations for the glass-ceramics relative to the base
glass become more pronounced, indicating increased
plasticity, with increasing heat treatment time.

3. MODEL FOR INDENTATION STRESS-STRAIN
CURVE WITH SPHERICAL INDENTERS

In this section we construct a model for Hertzian
contact plasticity in ceramics with a high density of
discrete weak interfaces. Previous models [24, 25] have
focussed on a generic two-step deformation—fracture
element, a closed shear fault with extensile cracks
at its ends [34-36, 38], embedded in the subcontact
compression zone. No direct attention has been given
in these previous models to the integrated effect of
multiple fault sources on the stress—strain response.
Here we are concerned explicitly with the py(a/r)
function for “‘underdeveloped” fault systems, notably
platelet structures, in which extensile cracks are not
yet an essential component of the damage.

Before analyzing the plastic contact with spherical
indenters, let us consider the perfectly elastic Hertzian
field as a reference state. Such a field prevails below
the shear fault activation stress for deformable cer-
amics, and is therefore independent of the nature of
any ensuing shear fault activity. The well documented
Hertzian relation between the indentation stress p,
and indentation strain a/r is linear proportional:

po = BE/4nk)a/r )

where E is Young’s modulus of the composite
specimen material and k is a dimensionless coefficient
of the indenter/specimen material system [8, 12, 39].
Because all the parameters in equation (1) are usually
specifiable a priori for a given indenter/specimen
material system, the function p,(a/r) is predetermined.

3.1. Basic shear fault micromechanics

Now consider the plastic component of the contact
field with spherical indenters. In a fully plastic field,
the net deformation is the integrated effect of all shear

tFor sliding to occur, the condition t; = 0 must be satisfied
in equation (2). It is also implicit that oy <0, for
otherwise the u-containing term in equation (2) would
disappear. Finally, it is implicit that equation (2) applies
only to forward sliding at the fault interface—in back-
ward sliding (as may occur in some unloading half-cycles
at very high contact loads) the signs of the two internal
friction terms in equation (2) will reverse.
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Fig. 6. Deformation of platelet of length / and thickness w

within matrix, by sliding at upper and lower interfaces under

action of net shear stress 7. Sliding is constrained within
elastic matrix, by resistive pressures p at ends.

faults within the active zone. In the limit of high
volume fractions of particles with large weak inter-
facial areas, the elastic contribution to the strain may
be considered negligibly small.

Our analysis takes as its central deformable
element a closed shear fault located at a rectangular
platelet/matrix interphase boundary, with frictional
tractions at the sliding interface, as in Fig. 6 [25].
Characteristic microstructural dimensions of the
platelet are length / and thickness w, corresponding
to an aspect ratio L =//w. Constrained slippage
occurs at the weak interphase boundaries, the “fault
planes”. Each individual fault plane is subject to a net
shear stress g, consisting of the resolved component
from an externally applied field minus terms from
internal frictional resistance to sliding [2, 34, 36]. This
net shear stress is a function of slip displacement u:

Tp =15 — Tc| — plonl =Ku 2
where tg and oy are resolved shear and normal
compression stresses from the applied field acting
on the sliding interface, p is the coefficient of sliding
friction and 1. the “cohesion” (or ‘“adhesion’)
strength of the same interface, and x is an elastic
constraint term from the matrix [24].+ If residual
mismatch stresses oy were also to be present at the
interphase boundaries, o would simply be replaced
by oy + og [25].

The coefficient x arises from pressures p exerted
by the matrix on the constrained half-ends of the
deforming platelet and contains essential information
on the microstructure. For simplicity, we represent
the upper and lower halves of the platelet in Fig. 6
as left- and right-acting cylindrical punches of
characteristic radius b, and the confining matrix at
each end as load-bearing elastic half-planes. The
generic contact relation for such a punch configur-
ation is [39]

p=AEulb 3)

with 4 a geometric coefficient dependent on con-
ditions at the contact interface; e.g. 4 =2/n(1 —v?)
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Fig. 7. Volume element in contact stress field, subject to prin-

cipal compression stresses —og; and —o,. Element contains
distribution of discrete platelets at orientation ¥ to o axis.

=0.55 at constant u and A = 37/16(1 — v?) = 0.68 at
constant p (Poisson’s ratio v = 0.26) [39]. The charac-
teristic radius b is expressible in terms of the platelet
dimensions by defining an equivalent contact area
nb?=lw/2. 4
The mean contact pressure is also relatable to the
frictional shear stress tp via the corresponding net
shear force Pp=tgp/%
p =2Pp/lw =21l w. ®)
Combining equations (3)—(5) allows us to determine
the constraint coefficient in equation (2):
K = (m/2)PAEW 2?2, 6)
Now consider a unit of volume within the contact
deformation zone containing multiple, noninteracting
shear fault elements, as in Fig. 7. Noting that the
shear strain for each deformed element in Fig. 6 is
e =u/w, and writing the net shear stragin over all
active elements as ¢ = eV}, we determine a constitu-
tive relation for the contact deformation zone from
equations (2) and (6):
g =€ E[VL*? @)
[recalling that L =I/w, and approximating (r/2)'?A
to unity]. Hence volume fraction V; and aspect ratio

L are important microstructural variables in equation
(7), but absolute grain size / is not.

3.2, Stress—strain relation for plastic contact field

In this subsection we seek to derive a py(a/r)
function for the fully plastic contact with spherical
indenter. First, we determine a relation between the
frictional shear stress term 7y and the contact stress
p,- For this we use equation (2), and evaluate 74 and
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oy at some ‘“‘representative’ point within the contact
deformation zone [24, 25]:

Tp= [%(% —a;) sin 2¥]p, — ¢

—#[%(“3+°‘1)_%(°‘3_°‘1)COS 2¥]p, ®)

with o, = —o,/p, and a;= —a;/p, positive co-
efficients, ¥ the angle between the fault plane and
0, axis, Fig. 7. In reality, the o terms and ¥ will vary
spatially from fault to fault, so strictly a stochastic
treatment is in order. However, in the interest of
simplicity we shall assume uniform, ‘“averaged”
values for these parameters within the contact
deformation zone.

Next, we relate the shear strain term ¢g to the
contact strain a/r. Here we make use of the principle
of geometrical similarity, and assert that the strain at
any point within the deformation zone is determined
uniquely by geometrical considerations, independent
of absolute scale of the contact. Accordingly, we may
write a simple scaling law [11]

)

es= Bsalr

with s a coefficient to be calibrated.
We may now insert (8) and (9) into (7) and solve
for py(a/r). We obtain the following linear function:

Po=2(BsE/V:L*)alr + )/
{(o — o) sin 2¥ — (o5 + ;)

— (o3 — o) cos 2¥]}. (10)

Note the dependence on microstructural variables:
volume fraction ¥; and aspect ratio L, friction par-
ameters 7 and p. Again, if residual stresses oy were
also to be present, 7. in equation (10) would simply
be replaced by tc — pog.

Equation (10) is expected to fit the indentation
stress—strain data in the fully plastic region. From
such a fit we should be able to calibrate the governing
parameters for any given material system.

4. ANALYSIS OF INDENTATION DATA FOR
GLASS-CERAMICS

4.1. Parametric fits

We illustrate the theoretical model in Section 3 by
plotting equations (1) and (10) as line asymptotes to
the glass-ceramic data in Fig. 5. In the elastic region,
the lines are preset by inserting £ = 70 GPs (Section
2.1) and k& = 0.59 (tungsten carbide on glass-ceramic)
[8] in equation (1) for all materials in the series.

In the plastic region, the linear plots are fitted to
the data at high strains in accordance with equation
(10). Since the linear plots are interrelated via the
microstructural variables in equation (10), it is
necessary to specify just two independent quantities
for the entire set of five glass-ceramics. Accordingly,
we fix universal intercept and slope quantities,
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I =21 /{(0; — o )sin 2¥ — pu[(oes + ;)
— (o3 — oy )cos 2¥]} = 2.20 GPa
SV L*? = 2B E [{(ay — o, )sin 2¥
— ul(o+0y) (a3 — oy )cos 2¥]}
=24.7GPa,

and hold volume fraction ¥V} and friction 7. constant
but allow aspect ratio L to vary in accordance with
experimental measurement (Section 2) to obtain the
material-to-material variation in Fig. 5.

Thus the model is able to account for the data
trends with change in the microstructure, in this
specific case in the aspect ratio. It is of corollary
interest to evaluate the six individual parameters
contained in the intercept and slope quantities I and
S in the plastic region, viz. ¥, «, and o5, fi5, u and
7¢. Clearly, any such evaluation requires independent
information on four of these parameters. Appro-
priate estimates may be obtained from stress field
considerations:

(1) In the interest of a conservative analysis, we
assume the most favorable platelet orientation for
slip within the contact field, i.e. ¥ =45° (Fig. 7).

(ii) We use the Hertzian elastic field (at Poisson’s
ratio 0.26) to obtain estimates of the reduced stress
parameters «, = —a,/p, and o3 = —o;/p, [24]. Again
in the interest of a conservative analysis, we evaluate
these parameters at the location of maximum shear
stress, i.e. at a depth 0.5a below the contact center.
The principal normal stresses at this point correspond
to o, =0.25 and a5 =0.74, the principal shear stress
to (o — ;) = 0.48.

(iii) In principle, the friction parameter u may be
estimated from the shape of the subsurface damage
zone, specifically from the appearance of a null region
immediately below the contact surface where the com-
pressive stresses are so high as to suppress interfacial
sliding at the shear faults [8]. Such a region is difficult
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Fig. 8. Intrinsic compression stress—strain curves for glass-
ceramic with aspect ratio L = 4.8, deduced from calibration
of equation (10) using indentation stress—strain data in
Fig. 5. Lines for «,/a; =0,/0; =0 (uniaxial compression),
o, Jay = 0.25, 0.5, 0.7 (compression with confining pressure),
and o,/o;= —1 (compression with “confining” tension).
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to discern in Fig. 3(b), implying that u must be small
for our glass-ceramic. As a first approximation, we
take u =0.

With these estimates, for V;=0.70 = constant
(Section 2), we evaluate fig = 0.087 and 7. = 540 MPa
from the data fits for our glass-ceramic system.

We emphasize that the above parameter evaluations
are first-order approximations only, and no strong
physical significance is therefore meant to be attached
to the numbers.

4.2. Determination of intrinsic stress—strain curves

We may use our calibration to determine the
intrinsic stress—strain response that would obtain in a
uniform compression stress test if it were possible to
suppress macroscopic fracture. It is simply a matter
of rescaling the axes in the indentation stress—strain
diagram. The “constraint factor” for scaling the
compression stress axis is simply oy in —a3 = o3p,.
The “representative strain factor” for scaling the
compression strain axis is § = 0.20 in ¢ = fa/r [11]
[cf. Bs in equation (9)].

To illustrate, we generate compression stress—strain
functions in Fig. & for one of our glass-ceramics, with
aspect ratio L = 4.8 pm. We do this by scaling p, and
a/r in equation (10) as above, for appropriate values
of 6, /03 = &, Jo;: uniaxial compression (i.e. —g, =0),
o, /oy = 0; confining pressure, o,/o;=0.25, 0.5 and
0.7; “confining” tension, «;/a; = —1. Note the en-
hancement of quasi-ductility with increasing confin-
ing pressure (increasing o, /a;), consistent with the
trends observed in deformation experiments using
belt apparatus in rock mechanics [2].

5. DISCUSSION

The Hertzian contact test results described in
Section 3 provide fundamental information on the
intrinsic properties of otherwise brittle ceramics,
information not generally attainable by more con-
ventional testing procedures. Specifically, it enables
one to generate (asymptotic) indentation stress—strain
curves, such as those shown in Fig. 5 for our glass-
ceramic, and thus to quantify any plasticity char-
acteristics. Data of this kind are highly pertinent
to structural applications where concentrated stresses
are active, e.g. in bearings, in components subject to
degradation by impact damage, in contact fatigue
and wear, and in machining operations [33]. The
generation of quasi-ductility in ceramics offers the
prospect of high energy absorption capacity and flaw
tolerance, characteristics usually considered to be the
exclusive domain of metals [6].

The crux of the present study is the model pre-
sented in Sections 3 and 4 describing the high-strain,
plasticity regions of the indentation stress—strain
curves in Fig. 5. As its central element, the model
considers a shear fault at a platelet/matrix interface
within the Hertzian contact field, with slippage along
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the interface and elastic constraint from the embedding
matrix at its ends. Starting from a constitutive law for
a single fault, a macroscopic stress—strain response is
derived by summation over all such faults within the
plastic zone. Our description retains the conventional
basis of plasticity theory, in that the shear-fault
deformation elements are discrete and shear-activated;
however, these elements differ fundamentally from the
mobile dislocations responsible for classical ductility
in metals. An essential ingredient of the description is
the existence of resistive frictional tractions at the
sliding interfaces, incorporating provision for inter-
facial attrition and thus for fatigue in cyclic loading
[5,25-27].

A major advantage of the microscopically-based
formulation presented here over the more traditional
descriptions of indentation plasticity is its emphasis
on microstructural variables in equation (10). Inter-
facial weakness, quantified by low values of p and 7,
is the key to a plastic response. For a given material
system, the ensuing plasticity is enhanced by large
volume fraction V;and aspect ratio L; however, grain
size / is not a direct factor. This independence of
grain size in the damage mechanics runs counter to
common experience in those materials where extensile
“wing” fractures accompanies the shear faults
[34-36, 38]; in those cases crack initiation thresholds
in microstructural scale are manifest [7, 24].

Whereas our theoretical approach in Section 3
is generic in that it contains the essential ingredients
for describing contact plasticity in any ordinarily
brittle material with constrained weak interfaces,
the indentation stress—strain function in equation (10)
relates very specifically to platelet configurations.
Also, we have taken the response beyond the elastic
limit to be fully plastic in Fig. 5, even though the
elastic component is not at all insignificant in the
intermediate range of strains (0.1-0.2). Moreover,
we have neglected interactions between neighbouring
shear faults and ignored the effect of these interactions
on the Hertzian elastic field, limiting the plastic
stress—strain curve to a linear, monotonically increas-
ing function of strain. In reality, interaction effects
can be profound, especially if wing microfractures
generate and coalesce at high strains [36], increasing
the local compliance in the damage zone [2]. Such
interactions can lead to substantial nonlinearities,
and even bendover through a maximum (“strain
softening”), in the stress—strain curve [2, 3]. In such
cases the use of more traditional continuum contact
field solutions, e.g. expanding cavity model [39, 40]
but modified to include work hardening, might be
advocated. On the other hand, such solutions would
necessarily circumvent the micromechanical descrip-
tion embodied in Fig. 6, essentially replacing the shear
stress parameters by a macroscopic “yield stress”, thus
precluding the incorporation of basic microstructural
variables. Finally, we have ignored stochastical
variations in the orientation- and space-sensitive ¥
and o terms in equation (10) within the highly
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inhomogeneous contact field. These limitations in the
modelling, together with the simplifications in the
geometrical description in Fig. 6 and the approxim-
ations in the parameter calibrations in Section 4.1,
suggest that the analysis should not be used to predict
more than broad trends in stress—strain responses.

Acknowledgements—The authors gratefully acknowledge
valuable discussions with N. P. Padture. D. G. Grossman
and K. Chyung kindly provided the glass-ceramic materials
used in this study. Funding for A.C.F.-C. was provided by
the U.S. Air Force Office for Scientific Research.

REFERENCES

1. B. R. Lawn, Fracture of Brittle Solids, 2nd edn,
Cambridge Univ. Press, Cambridge (1993).

2. J. C. Jaeger and N. G. W. Cook, Fundamentals of
Rock Mechanics, Chapman & Hall, London (1971).

3. S. P. Shah, NATO Advanced Science Institute Series,
Kluwer Academic, Dordrecht (1990).

4. M. S. Paterson, Experimental Rock Deformation—The
Brittle Field, Springer, Berlin (1978).

5. F. Guiberteau, N. P. Padture, H. Cai and B. R. Lawn,
Phil. Mag. A 68, 1003 (1993).

6. B. R. Lawn, N. P. Padture, H. Cai and F. Guiberteau,
Science 263, 1114 (1994).

7. F. Guiberteau, N. P. Padture and B. R. Lawn, J. Am.
Ceram. Soc. 77, 1825 (1994).

8. H. Cai, M. A. Stevens Kalceff and B. R. Lawn,
J. Mater. Res. 9, 762 (1994).

9. N. P. Padture and B. R. Lawn, J. Am. Ceram. Soc. 77,

2518 (1994).

H. H. K. Xu, L. Wei, N. P. Padture, B. R. Lawn and

R. L. Yeckley, J. Mater. Sci. 30, 869 (1995).

D. Tabor, Hardness of Metals, Clarendon, Oxford

(1951).

M. V. Swain and B. R. Lawn, Physica status solidi 35,

909 (1969).

M. V. Swain and J. T. Hagan, J. Phys. D: Appl. Phys.

9, 2201 (1976).

H. Hertz, Hertz’s Miscellaneous Paper, Chaps 5 and 6.

Macmillan, London (1896).

15. F. C. Roesler, Proc. Phys. Soc. Lond. B69, 981 (1956).

. F. C. Frank and B. R. Lawn, Proc. R. Soc. Lond. A299,

291 (1967).

T. R. Wilshaw, J. Phys. D: Appl. Phys. 4, 1567 (1971).

B. R. Lawn and T. R. Wilshaw, J. Mater. Sci. 10, 1049

(1975).

T. O. Mulhearn, J. Mech. Phys. Solids 7, 85 (1959).

R. Steinbrech, R. Knehans and W. Schaarwichter,

J. Mater. Sci. 18, 265 (1983).

P. L. Swanson, C.J. Fairbanks, B. R. Lawn, Y.-W. Mai

and B. J. Hockey, J. Am. Ceram. Soc. 70, 279 (1987).

P. L. Swanson, Fractography of Glasses and Ceramics

(edited by J. Varner and V. D. Frechette), Vol. 22,

p. 135. Am. Ceram. Soc., Columbus, Ohio (1988).

S. J. Bennison, J. Rodel, S. Lathabai, P. Chantikul and

B. R. Lawn, Toughening Mechanisms in Quasi-Brittle

Materials (edited by S. P. Shah), p.209. Kluwer

Academic, Dordrecht (1991).

B. R. Lawn, N. P. Padture, F. Guiberteau and H. Cai,

Acta metall. mater. 42, 1683 (1994).

N. P. Padture and B. R. Lawn, Acta metall. mater. 43,

1609 (1995).

H. Cai, M. A. S. Kalceff, B. M. Hooks, B. R. Lawn and

K. Chyung, J. Mater. Res. 9, 2654 (1994).

N. P. Padture and B. R. Lawn, J. Am. Ceram. Soc. 78,

1431 (1995).

R. N. Katz and J. G. Hannoosh, Int. J. High Technol.

Ceram. 1, 69 (1985).

10.
1.
12.
13.

14.

17.
18.

19.
20.

21.
22.

23.

24.
25.
26.
27.

28.



29

30.

31

32.

33.

FISCHER-CRIPPS and LAWN:

. G. H. Beall, Advances in Nucleation and Crystallization
in Glasses (edited by L. L. Hench and S. W. Freiman),
p.251. Am. Ceram. Soc., Columbus, Ohio (1972).

C. K. Chyung, G. H. Beall and D. G. Grossman,
Electron Microscopy and Structure of Materials (edited
by G. Thomas, R. M. Fulrath and R. M. Fisher),
p. 1167. Univ. of California Press, Berkeley, Calif.
(1972).

K. Chyung, Fracture Mechanics of Ceramics (edited by
R. C. Bradt, D. P. H. Hasselman and F. F. Lange),
Vol. 2, p.495. Plenum Press, New York (1974).

C. J. Fairbanks, B. R. Lawn, R. F. Cook and
Y. W. Mai, Fracture Mechanics of Ceramics (edited by
R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F.
F. Lange), Vol.8, p.23. Plenum Press, New York
(1986).

N. P. Padture, C. J. Evans, H. H. K. Xu and B. R.
Lawn, J. Am. Ceram. Soc. 78, 215 (1995).

“QUASI-DUCTILE” CERAMICS

34

35

36.
37.

38.

39.

40.

527

. H. Horii and S. Nemat-Nasser, J. Geophys. Res. 90,
3105 (1985).

. H. Horii and S. Nemat-Nasser, Phil. Trans. R. Soc.

Lond. 319, 337 (1986).

M. F. Ashby and S. D. Hallam, Acta metall. 34, 497

(1986).

D. G. Grossman, Proceedings of the International

Symposium on Computer Restorations (edited by

W. H. Mérmann), p.103. Quintessence, Chicago, 1l

(1991).

J. M. Kemeny and N. G. W. Cook, Toughening

Mechanisms in Quasi-Brittle Materials (edited by

S. P. Shah), p.287. Kluwer Academic, Dordrecht

(1991).

K. L. Johnson, Contact Mechanics, Cambridge Univ.

Press, London (1985).

R. Hill, The Mathematical Theory of Plasticity, Oxford

Univ. Press, London (1950).





